Hadronic Physics III

Geant4 Tutorial at MIT

23 June 2016
Dennis Wright
Outline

• QCD string models

• Gamma- and lepto-nuclear models

• Capture, Stopping and Fission models

• Radioactive decay
High Energy Nuclear Interaction

![Diagram](image)

- **Excited String**
- **Nucleon**
- **Projectile**

Diagram illustrating the interaction process in high energy nuclear reactions.
How the String Model Works (FTF Model)

• Lorentz contraction turns nucleus into pancake

• All nucleons within 1 fm of path of incident hadron are possible targets

• Excited nucleons along path collide with neighbors
 • $n + n \rightarrow n\Delta$, NN, ΔΔ, NΔ, …
 • essentially a quark-level cascade in vicinity of path \rightarrow Reggeon cascade

• All hadrons treated as QCD strings
 • projectile is quark-antiquark pair or quark-diquark pair
 • target nucleons are quark-diquark pairs
How the String Model Works (FTF Model)

• Hadron excitation is represented by stretched string
 • string is set of QCD color lines connecting the quarks

• When string is stretched beyond a certain point it breaks
 • replaced by two shorter strings with newly created quarks, anti-quarks on each side of the break

• High energy strings then decay into hadrons according to fragmentation functions
 • fragmentation functions are theoretical distributions fitted to experiment

• Resulting hadrons can then interact with nucleus in a traditional cascade
Two QCD String Models Available

• Fritiof (FTF) valid for
 • $p, n, \pi, K, \Lambda, \Sigma, \Omega$ from 3 GeV to \simTeV
 • anti-proton, anti-neutron, anti-hyperons at all energies
 • anti-d, anti-t, anti-^3He, anti-α with momenta between 150 MeV/nucleon and 2 GeV/nucleon

• Quark-Gluon String (QGS) valid for
 • p, n, π, K from 15 GeV to \simTeV

• Both models handle:
 • building 3-D model of nucleus from individual nucleons
 • splitting nucleons into quarks and di-quarks
 • formation and excitation of QCD strings
 • string fragmentation and hadronization
QGS Validation
Gamma- and Lepto-nuclear Processes

• Geant4 models which are neither exclusively electromagnetic nor hadronic
 • gamma-nuclear
 • electro-nuclear
 • muon-nuclear

• Geant4 processes available:
 • G4PhotoNuclearProcess (implemented by two models)
 • G4ElectronNuclearProcess (implemented by one model)
 • G4PositronNuclearProcess (implemented by one model)
 • G4MuonNuclearProcess (implemented by two models)
Gamma- and Lepto-nuclear Processes

- Gammas interact directly with the nucleus
 - at low energies they are absorbed and excite the nucleus as a whole
 - at high energies they act like hadrons (pion, rho, etc.) and form resonances with protons and neutrons

- Electrons and muons cannot interact hadronically, except through virtual photons
 - electron or muon passes by a nucleus and exchanges virtual photon
 - virtual photon then interacts directly with nucleus (or nucleons within nucleus)
Gamma- and Lepto-nuclear Models

Gamma-nuclear

Lepto-nuclear

\[\gamma \rightarrow \pi s \text{ and nucleons} \]

\[e^{-} \rightarrow \text{virtual } \gamma \]

\[\pi s \text{ and nucleons} \]
Gamma- and Lepto-nuclear Models

- **G4MuonVDNuclearModel**
 - Kokoulin model of EM cross section and virtual photon generation
 - Weizsacker-Williams conversion of virtual to real gamma
 - For $E_\gamma < 10$ GeV, direct interaction with nucleus using Bertini cascade
 - For $E_\gamma > 10$ GeV, conversion of γ to π^0, then interaction with nucleus using FTFP model

- **G4ElectroVDNuclearModel**
 - Kossov model of EM cross section and virtual photon generation
 - all else identical to that in G4MuonVDNuclearModel

- **For gamma-nuclear reaction**
 - Bertini cascade below 3.5 GeV
 - QGSP from 3 GeV to 100 TeV
Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture

Capture and Stopping Models

Capture

Capture

Stopping

n

γ s and nucleons

negative particle

atomic cascade

capture
Stopped Hadron Models

• G4PiMinusAbsorptionBertini, G4KaonMinusAbsorptionBertini, G4SigmaMinusAbsorptionBertini
 • at rest process implemented with Bertini cascade model
 • G4Precompound model used for de-excitation of nucleus
 • includes atomic cascade but not decay in orbit

• G4AntiProtonAbsorptionFritiof, G4AntiSigmaPlusAbsorptionFritiof
 • FTF model used because > 2 GeV available in reaction
 • G4Precompound model used for de-excitation of nucleus
 • includes atomic cascade but not decay in orbit
Stopped Muon Models

• G4MuonMinusCapture
 – atomic cascade, with decay in orbit enabled
 – K-shell capture and nuclear de-excitation implemented with Bertini cascade model
 – used in most physics lists

• G4MuonMinusCaptureAtRest
 – atomic cascade, with decay in orbit enabled
 – K-shell capture uses simple particle-hole model
 – nuclear de-excitation handled by G4ExcitationHandler
Muon Capture using Bertini Model (red), old model (black)
Capture Models

• Neutrons, anti-neutrons never really stop, they just slow down from elastic scattering or are absorbed
 – kinetic energy must be taken into account

• G4HadronCaptureProcess
 – in-flight capture for neutrons
 – model implementations:
 • G4ParticleHPCapture (below 20 MeV)
 • G4NeutronRadCapture (all energies)

• G4AntiNeutronAnnihilationAtRest
 – implemented by GHEISHA parameterized model
Fission Processes and Models

• Many hadronic models already include fission implicitly
 – included in nuclear de-excitation code
 – in that case don’t add fission process to physics list -> double counting
 – usually only needed in special cases

• G4HadronFissionProcess can use two models
 – G4ParticleHPFission
 • specifically for neutrons below 20 MeV
 • fission fragments produced if desired
 – G4FissLib: Livermore Spontaneous Fission
 • handles spontaneous fission as an inelastic process
 • no fission fragments produced, just neutron spectra
Fission Processes and Models

• Fission fragments can be produced with Wendt fission model
 – automatically available when ParticleHPFission is used
 – invoke by setting two environment variables:
 • G4NEUTRONHP_PRODUCE_FISSION_FRAGMENTS
 • G4NEUTRON_HP_USE_WENDT_FISSION_MODEL
 – see extended example geant4/examples/extended/hadronic/FissionFragment

• Model developed by Geant4 user who needed fission fragments in addition to emitted neutrons for reactor studies
 – worked with Geant4 developer and contributed code
Radioactive Decay

- Process to simulate radioactive decay of nuclei
 - in flight
 - at rest
- α, β^+, β^-, γ decay, electron capture (EC) implemented
- Empirical and data-driven
 - data files taken from Evaluated Nuclear Structure Data Files (ENSDF)
 - as of Geant4 10.2, these are in RadioactiveDecay4.3
 - half lives, nuclear level structure for parent and daughter nuclides, decay branching ratios, energy of decay process
 - currently 2792 nuclides, including all meta-stable states with lifetimes > 1 ns
Radioactive Decay Chain

EC: electron capture
IC: internal conversion
ARM: atomic relaxation model
Atomic Relaxation Model

electron shell configuration may change after decay

inner holes filled by atomic cascade

either photons or Auger electrons are emitted

fluorescence option also available
β Decay Spectrum Shapes
Gamma (or electron) Emission

- If daughter of nuclear decay is an isomer, prompt de-excitation is done by using G4PhotonEvaporation
 - uses ENSDF files with all known gamma levels for 2071 nuclides
 - as of Geant4 10.0, these are in PhotonEvaporation3.2
 - internal conversion is enabled as a competing process to gamma de-excitation

- Nuclides with LT < 1 ns decay immediately

- Option to enable atomic relaxation after decay
 - atomic cascade
 - Auger
 - fluorescence
Biased Mode

- G4RadioactiveDecay has several biasing options
 - amplify rare decay branches
 - set all decay branches equal
 - "splitting" : perform nuclear decay N times for each event
 - activation: integrate decay chain over time windows using Bateman equations
 - collimation of decay products
 - enable/disable decay in various geometry volumes

- Options activated by UI commands
Using Radioactive Decay

• Can be accessed with messengers (biasing options, etc.)

• To put in your physics list:

 G4RadioactiveDecay* rDecay = new G4RadioactiveDecay;
 G4PhysicsListHelper* plh = G4PhysicsListHelper::GetPhysicsListHelper();
 rDecay->SetICM(true); // internal conversion
 rDecay->SetARM(true); // atomic relaxation
 plh->RegisterProcess(rDecay, G4GenericIon::G4GenericIon());

• Set environment variables to point to:
 – RadioactiveDecay4.3
 – PhotonEvaporation3.2
Examples Using RDM

- /examples/extended/radioactive_decay/rdecay01
 - 2 x 2 x 2 mm box of air
 - only radioactive decay and transportation enabled
 - default: decay of 210Pb at origin of box
 - user-defined decay files
 - analysis options: energy, lifetime histograms
 - visualization
Examples Using RDM

• /examples/extended/radioactivedecay/rdecay02
 • CsI cylindrical target at center of detector tube made of Ge
 • physics
 • induced radioactivity
 • radioactive decay + standard EM
 • option to use full physics list
 • Generalized Particle Source fires 1 GeV p
 • analysis options: energy histograms, pulse height spectra
Summary

• Two QCD string models available for high energy interactions
• Gamma-nuclear and lepto-nuclear processes are available
 • for γ, e^-, e^+, μ^-, μ^+ projectiles
• Several stopping processes and models available
 • for μ^-, π^-, K^-, Σ^-, anti-p, anti-Σ^+
• Capture process and models exist for n, anti-n
• Fission
 – be sure not to double-count
 – model now available to produce fission fragments
• The radioactive decay process is quite detailed and has many recent improvements