Outline

• Overview of hadronic physics
 • processes, cross sections, models
 • hadronic framework and organization

• Precompound models
 • and de-excitation models

• Cascade models
 • Bertini-style, binary, INCL++
Hadronic Processes, Models and Cross Sections

- In Geant4 physics is assigned to a particle through processes.
- Each process may be implemented:
 - directly, as part of the process, or
 - in terms of a model class.
- Geant4 often provides several models for a given process:
 - user must choose
 - can, and sometimes must, have more than one per process.
- A process must also have cross sections assigned:
 - here too, there are options.
Cross Sections

• Default cross section sets are provided for each type of hadronic process
 • fission, capture, elastic, inelastic
 • can be overridden or completely replaced

• Different types of cross section sets
 • some contain only a few numbers to parameterize the c.s.
 • some represent large databases
 • some are purely theoretical (equation-driven)
Alternative Cross Sections

• Low energy neutrons
 • G4NDL available as Geant4 distribution files
 • Livermore database (LEND) also available
 • available with or without thermal cross sections

• Medium energy neutron and proton reaction cross sections
 • $14 \text{ MeV} < E < 20 \text{ GeV}$

• Ion-nucleus reaction cross sections
 • Tripathi, Shen, Kox
 • good for $E/A < 10 \text{ GeV}$

• Pion reaction cross sections
Cross Section Management

GetCrossSection() sees last set loaded within energy range

Load sequence

Set 1

Set 2

Set 3

Set 4

Default cross section set

Energy
Data-driven Hadronic Models

• Characterized by lots of data
 • cross sections
 • angular distributions
 • multiplicities, etc.

• To get interaction length and final state, models depend on interpolation of data
 • cross sections, Legendre coefficients

• Examples
 • neutrons (E < 20 MeV)
 • coherent elastic scattering (pp, np, nn)
 • radioactive decay
Theory-driven Hadronic Models

• Dominated by theoretical arguments (QCD, Glauber theory, exciton theory...)

• Final states (number and type of particles and their energy and angular distributions) determined by sampling theoretically calculated distributions

• This type of model is preferred, as it is the most predictive

• Examples
 • quark-gluon string (projectiles with $E > 20$ GeV)
 • intra-nuclear cascade (intermediate energies)
 • nuclear de-excitation and break-up
Partial Hadronic Model Inventory

- At rest absorption, μ, π, K, anti-p
- Radioactive decay
 - High Prec. Particle
 - LEND
 - High prec. neutron
 - Evaporation
 - Fermi breakup
 - Multifragment
 - Photon Evap
 - Pre-compound
 - INCL++
 - Binary cascade
 - Bertini-style cascade
 - Photo-nuclear, electro-nuclear, muon-nuclear
 - Electro-nuclear dissociation
 - QMD (ion-ion)
 - Wilson Abrasion
 - Quark Gluon string
 - Fritiof string

Energy scales:
- 1 MeV
- 10 MeV
- 100 MeV
- 1 GeV
- 10 GeV
- 100 GeV
- 1 TeV
Model Management

Model returned by GetHadronicInteraction()

Model 1
Model 3
Model 4
Model 2

Energy
Hadronic Interactions from TeV to meV

TeV hadron

dE/dx $\sim A^{1/3}$ GeV

~100 MeV to ~10 MeV

p, n, d, t, α

~10 MeV to thermal

~GeV to ~100 MeV

γ and n
Precompound Models

• G4PrecompoundModel is used for nucleon-nucleus interactions at low energy and as a nuclear de-excitation model within higher-energy codes
 • valid for incident p, n from 0 to 170 MeV
 • takes a nucleus from a highly excited set of particle-hole states down to equilibrium energy by emitting p, n, d, t, 3He and α
 • once equilibrium is reached, four sub-models are called to take care of nuclear evaporation and break-up
 • these 4 models not currently callable by users

• Two Geant4 cascade models have their own version of nuclear de-excitation models embedded in them
De-excitation Models

- Four sub-models typically used to de-excite a remnant nucleus
 - Fermi break-up
 - photon evaporation
 - multi-fragmentation
 - fission

- These models are not intended to be assigned directly to a process
 - instead they are meant to be linked together and then assigned to the G4Precompound model through the class G4ExcitationHandler
De-excitation Model Details

- **Fermi break-up**
 - remnant nucleus is destroyed – nothing left but p, n, t, a
 - valid only for $A < 17$ and high excitation energies

- **Fission**
 - splits excited nucleus and emits fission fragments $+ n$
 - valid only for $A > 65$

- **Multi-fragmentation**
 - statistical breakup model with propagation of fragments in Coulomb field
 - for excitation energies $E/A > 3$ MeV
De-excitation Model Details

• Photon evaporation
 • usually final stage of nuclear de-excitation
 • data-driven: uses ENSDF database
 • currently have up to hundreds of gamma levels for 2071 nuclides in PhotonEvaporation3.1
 • handles gamma cascades, does electron emission in case of internal conversion
 • currently no correlation when more than one gamma emitted (but that’s coming)
Precompound Models

• Invocation of Precompound model:
 G4ExcitationHandler* handler = new G4ExcitationHandler;
 G4PrecompoundModel* preco = new G4PrecompoundModel(handler);
 // Create de-excitation models and assign them to precompound model

 G4NeutronInelasticProcess* nproc = new G4NeutronInelasticProcess;
 nproc->RegisterMe(preco);
 neutronManager->AddDiscreteProcess(nproc);
 // Register model to process, process to particle

• Here the model is invoked in isolation, but usually it is used in combination with high energy or cascade models
 • a standard interface exists for this
Intra-nuclear Cascade Models

• Typical intra-nuclear cascade energies are inconvenient
 • too high for nuclear physics treatments
 • too low for QCD

• Must use Monte Carlo techniques to propagate hadrons within the target nucleus in order to produce a final state
 • “Monte Carlo within a Monte Carlo”
 • one of the first applications of Monte Carlo methods to nuclear interactions
 • time-consuming

• Specific channels not produced
 • do not use data to produce, for example $^{14}\text{N}(p,n)^{14}\text{O}$
Bertini-style Cascade Model

• A classical (non-quantum mechanical) cascade
 • average solution of a particle traveling through a medium (Boltzmann equation)
 • no scattering matrix calculated
 • can be traced back to some of the earliest codes (1960s)

• Core code:
 • elementary particle collisions with individual protons and neutrons: free space cross sections used to generate secondaries
 • cascade in nuclear medium
 • pre-equilibrium and equilibrium decay of residual nucleus
 • target nucleus built of three concentric shells
Bertini Cascade (0 < E < 10 GeV)

1 to 3 uniform density shells

p, n, d, t, α

γ and n
Using the Bertini Cascade

- In Geant4 the Bertini cascade is used for p, n, π⁺, π⁻, K⁺, K⁻, K⁰_L, K⁰_S, Λ, Σ⁰, Σ⁺, Σ⁻, Ξ⁰, Ξ⁻, Ω⁻
 - valid for incident energies of 0 – 10 GeV
 - can also be used for gammas

- Invocation sequence

 G4CascadeInterface* bert = new G4CascadeInterface;
 G4ProtonInelasticProcess* pproc = new G4ProtonInelasticProcess;
 pproc->RegisterMe(bert);
 protonManager->AddDiscreteProcess(pproc);
 // same sequence for all other hadrons and gamma
Validation of Bertini Cascade
Binary Cascade Model

• Modeling sequence similar to Bertini, except
 • it’s a time-dependent model
 • hadron-nucleon collisions handled by forming resonances which then decay according to their quantum numbers
 • particles follow curved trajectories in smooth nuclear potential

• Binary cascade is currently used for incident p, n and π
 • valid for incident p, n from 0 to 10 GeV
 • valid for incident π⁺, π⁻ from 0 to 1.3 GeV

• A variant of the model, G4BinaryLightIonReacFon, is valid for incident ions up to A = 12 (or higher if target has A < 12)
Using the Binary Cascade

- Invocation sequence:
  ```
  G4BinaryCascade* binary = new G4BinaryCascade();
  G4PionPlusInelasticProcess* piproc =
      new G4PionPlusInelasticProcess();
  piproc->RegisterMe(binary);
  piplus_Manager->AddDiscreteProcess(piproc);
  ```
- Invoking BinaryLightIonReaction
  ```
  G4BinaryLightIonReaction* ionBinary =
      new G4BinaryLightIonReaction();
  ionProc->RegisterMe(ionBinary);
  genericIonManager->AddDiscreteProcess(ionProc);
```
Validation of Binary Cascade
256 MeV protons

\[\frac{d\sigma}{dE_d\Omega} \text{ [mb/MeV/Sr]} \]

neutron yield at 7.5°

Binary Cascade

- Be
- Al
- Fe
- Pb

\[E_{\text{kin}} \text{ [MeV]} \]
INCL++ Cascade Model

- Model elements
 - time-dependent model
 - smooth Woods-Saxon or harmonic oscillator potential
 - particles travel in straight lines through potential
 - delta resonance formation and decay (like Binary cascade)

- Valid for incident p, n and π, d, t, \(^3\)He, α from 150 MeV to 10 GeV
 - also works for projectiles up to \(A = 12\)
 - targets must be 11 < \(A < 239\)
 - ablation model (ABLA) can be used to de-excite nucleus

- Used successfully in spallation studies
 - also expected to be good in medical applications
Validation of INCL++ Model
Spallation residues from $p + {}^{208}\text{Pb}$
Summary (1)

• Geant4 hadronic physics allows user to choose how a physics process should be implemented
 • cross sections
 • models
• Many processes, models and cross sections to choose from
 • hadronic framework makes it easier for users to add more
• Precompound models are available for low energy nucleon projectiles and nuclear de-excitation
 • de-excitation sub-models handle the decay after the precompound stage
Summary (2)

- Three intra-nuclear cascade models available to cover medium energies (up to 10 GeV)
 - Bertini-style
 - Binary cascade
 - INCL++