Inhomogeneous Tissue Studies for Clinical Proton Therapy:

Universal Scaling and Interfacial Buildup Effects

D. Fry1,2, Ph.D., W. Sewchand2, Sc.D. and J. O’Connell2, MD
1The Henry Jackson Foundation for The Advancement of Military Medicine
2Walter Reed Army Medical Center
Department of Radiation Oncology
Washington, DC 20307
Computing at Walter Reed

<table>
<thead>
<tr>
<th></th>
<th>Master Node</th>
<th>Cluster Node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Units</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Number of Processors</td>
<td>2</td>
<td>2 (10 total)</td>
</tr>
<tr>
<td>Processor Type</td>
<td>G5, 64-bit</td>
<td>G5, 64-bit</td>
</tr>
<tr>
<td>Processor Speed</td>
<td>2.5 GHz (4.5 GHz Intel)</td>
<td>2.5 GHz (4.5 GHz Intel)</td>
</tr>
<tr>
<td>RAM</td>
<td>1GB/processor</td>
<td>512MB/processor</td>
</tr>
</tbody>
</table>
Characterizing % Depth–Dose

• Investigate properties of the clinical proton depth–dose in homogeneous and inhomogeneous materials.

• For quality assurance measures we need to understand properties of dose in heterogeneous structures.
Experimental Validation

![Graph showing % Depth Dose vs Scaled Depth in Water, z/r, and comparison between SRIM Peak Normalized % Ionization, Experiment (MGH, Gottschalk, 1991), NIST PTRAN3d, Difference Between SRIM and Exp., GEANT 4.5.0 Peak Normalized Eng. Deposition - No Hadronic, GEANT 4.5.0 Peak Normalized Eng. Deposition - With Hadronic, GEANT 4.7.0 - With Hadronic - PreCompound, excitation.]

- SRIM
- Experiment (MGH, Gottschalk, 1991)
- NIST PTRAN3d
- Difference Between SRIM and Exp.
- GEANT 4.5.0 Peak Normalized Eng. Deposition - No Hadronic
- GEANT 4.5.0 Peak Normalized Eng. Deposition - With Hadronic
- GEANT 4.7.0 - With Hadronic - PreCompound, excitation.

- Target cm Depth: H
- Target cm Depth: O Slab
- SRIM
- d = 1
- m = 1
- n = 4
- 4.5.0: GEANT
- 5 = 10
- Difference: 9.3%
Material–Dependent Scaling?

Analogy to heavy ion scaling in foil strippers:

\[
\left(\frac{\nu}{\nu_0} \right) Z^{-\gamma} \rightarrow E^{1/2} (1836E_0)^{-1/2} Z^{-\gamma}
\]

What is \(Z \) for a compound?

1. Mean \(Z \)

\[
Z_{\text{eff}} = \sum_{i=1}^{N} a_i Z
\]

\[
a_i = \left(\frac{N_{\text{av}} Z_i w_i}{A_i} \right) / \sum_{i=1}^{N} \frac{N_{\text{av}} Z_i w_i}{A_i}
\]

2. Ratio of Moments

\[
Z_{\text{eff}} = \sum_{i=1}^{N} \frac{a_i Z^2}{\sum_{i=1}^{N} a_i Z_i}
\]

\[
a_i = \left(\frac{N_{\text{av}} Z_i w_i}{A_i} \right) / \sum_{i=1}^{N} \frac{N_{\text{av}} Z_i w_i}{A_i}
\]

3. Power law - photoelectric cross section

\[
x = E^{1/2} (1836E_0)^{-1/2} Z_{\text{eff}}^{-\gamma}
\]

\[
a_i = \left(\frac{N_{\text{av}} Z_i w_i}{A_i} \right) / \sum_{i=1}^{N} \frac{N_{\text{av}} Z_i w_i}{A_i}
\]
Distal Edge Width

\[x = E^{1/2} \left(\frac{1836E_0}{Z_{eff}} \right)^{-1/2} \]

- ICRU Compact Bone
- ICRU Bone Equiv Plastic
- Amorphous Aluminum
- Calcium Hydroxyapatite

Distal Edge Width, \(d \) [mm]

Incident Proton Energy, \(E \) [MeV]

\[Z_{eff} = \left(\frac{a_i Z_i}{m} \right)^{1/m}, \quad a_i = 2.94 \]
Lateral Penumbra

\[x = E^{1/2} \left(\frac{1836E_0}{Z_{eff}} \right)^{-1/2} \]

Incident Proton Energy, \(E \) [MeV]

Lateral Edge Width [mm]

H\(_2\)O (STP)
ICRU Compact Bone
ICRU Bone Equiv. Plastic, B-100
Amorphous Aluminum
Calcium Hydroxyapatite
Bragg Peak FWHM

\[x = E^{1/2} \left(\frac{1836E_0}{Z_{eff}} \right)^{-1/2} \]

Incident Proton Energy, \(E \) [MeV] vs. Bragg Peak FWHM, \(x \) [mm]

- ICRU Compact Bone
- ICRU Bone Equiv Plastic B-
- Amorphous Aluminum
- Calcium Hydroxyapatite
Peak-to-Entrance Dose Ratio

\[S_w = \frac{S_{water}(E)}{S_X(E)} \]

\[X = \text{CompactBone, B – 100, Al, ...} \]
Bone–H_2O Interface Effects

![Graph showing the percentage depth-dose curve for bone and water interfaces.](image)

- **% Depth-Dose**
 - 0
 - 20
 - 40
 - 60
 - 80
 - 100
 - 120
 - 140
 - 160

- **Depth, d [mm]**
 - 0
 - 20
 - 40
 - 60
 - 80
 - 100
 - 120
 - 140
 - 160

- **E=150 MeV, $s=150$, H_2O**

- **Dx**

- **Bone-H$_2$O Interface Effects**

The Henry Jackson Foundation for the Advancement of Military Medicine, Rockville, MD Radiation Oncology, Walter Reed Army Medical Center, Washington, DC 20307
Relative Energy Loss From Bone

\[\Delta E = E_1 - E_2 \approx S(E_1) \Delta x \]

- Mean Proton Energy [MeV]

- \(D \) / [%]

- \(\text{ICRU Compact Bone} \)

- \(r = 1.859 / \text{g cm}^3 \)
Particle-Specific Energy Deposition

![Graph showing energy deposition per primary proton over depth.](image)

- Energy Deposited Per Primary Proton [MeV]
- Depth, d [mm]

Primary H +
Secondary H +
e-
a+

G4NAMU/SLAC 2006
Composite Distal Edge

\[Z_{\text{eff}} = \frac{1}{V} \sum_{i=1}^{N} v_i Z_{\text{eff},i} \]

\[x = E^{1/2} (1836E_0)^{-1/2} Z_{\text{eff}}^{-0.33} \]
Composite FWHM

\[Z_{eff} = \frac{1}{V} \sum_{i=1}^{N} v_i Z_{eff,i} \]

\[x = E^{1/2} (1836 E_0)^{-1/2} Z_{eff}^{-0.33} \]
Future Work

• Phantom Development – CTSim and 3d Rapid Prototyping (collaboration with the WRAMC 3D Medical Applications Center, Dr. Erge Edgu-Fry).

• Full 3d heterogeneity corrections.
Integrated Dose Fraction

\[N_0 = 10^6 \]

Phantom: 40cm X 40cm ICRU Compact Bone

Incident Proton Energy, \(E\) [MeV]

Integrated Dose Fraction in Compact Bone

- primary proton
- secondary proton
- electron
- gamma
- positron
- alpha
- deuteron
- triton