Using Geant4 in BaBar

Dennis Wright
Geant4 Users Workshop
18-22 February 2002
CP Asymmetries in B Decays
BaBar Detector
Beam Pipe and Vertex Tracker
BaBar Simulation Architecture

Event Generator

Bogus (Geant4)

Detector Response Simulation

Reconstruction + Analysis

Objectivity database
Geant4 Features Used in Bogus (1)

• Geometry
 – CSG solids, boolean volumes, G4Materials
 – Diagnostics (overlap scanner, material scanner)

• Hit scoring
 – G4 virtual sensitive detector, manager

• Visualization Interfaces and Drivers
 – Mostly OPENGL, some VRML
Geant4 Features Used in Bogus (2)

• Physics processes
 – Standard EM (ms, brems, pair, …)
 – Decay (long-lived particles)
 – Hadronic (E<10 GeV)

• Particles/Range Cuts
 – Now using material-dependent range cuts
 – Soon to be replaced by region-dependent cuts
Geant4 Features Not Used in Bogus

- Transportation
 - Alternative stepper developed for specific BaBar needs

- Detector response
 - Response code mostly complete before Geant4

- Persistence
 - BaBar database, framework require their own objects
Geant3/Geant4/Data Comparison

• Phase I
 – Gross comparison based on 1.5 million events
 – Validate standard EM, decay processes in low-mass region of detector
 – Validate BaBar material model
 – Compare tracking resolution
 – Compare energy loss
Material Model Validation

Conversions in $\gamma\gamma$ events

G3 8series over Data (points)

G4 10series over Data (points)
EM Process Validation
Tracking, dE/dx Validation (1)
Tracking, dE/dx Validation (2)

SP4 J/ψK⁺

<table>
<thead>
<tr>
<th></th>
<th>(\chi^2/\text{ndf})</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>73.52</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>40.03 ± 5.623</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>-11.10 ± 1.841</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>291.7 ± 11.01</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>3.096 ± 0.4174E-03</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>0.1283E-01 ± 0.3307E-03</td>
<td></td>
</tr>
</tbody>
</table>

SP4 J/ψK⁺

<table>
<thead>
<tr>
<th></th>
<th>(\chi^2/\text{ndf})</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>37</td>
<td>97.46</td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>42.86 ± 9.941</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>-58.11 ± 19.78</td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>516.3 ± 12.99</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>0.4980 ± 0.5403E-04</td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>0.2735E-02 ± 0.5014E-04</td>
<td></td>
</tr>
</tbody>
</table>
Geant3/Geant4/Data Comparison

• Phase II
 – Detailed Geant4/data comparison using 25 million events
 – Comparisons in all sub-detectors
 – Validate G4 hadronic processes (E<10 GeV)
 – Repeat EM validation
Bogus/Geant4 Performance

• Except for initialization time (100 s), as fast as Geant3

• Low crash rate (few events per million) on Linux and Sun

• Large-scale simulation production
 – 300 million events so far
 – 15 sites in US and Europe