Physics I: Physics Lists

University of Pennsylvania Geant4 Tutorial
15 May 2011
Dennis Wright
Outline

• Introduction
 ▪ What is a physics list and why do we need one?

• The G4VUserPhysicsList class
 ▪ What you need to begin

• Modular physics lists
 ▪ A more sophisticated way to go

• Pre-packaged physics lists
What is a Physics List?

- A class which collects all the particles, physics processes and production thresholds needed for your application
- It tells the run manager how and when to invoke physics
- It is a very flexible way to build a physics environment
 - user can pick the particles he wants
 - user can pick the physics to assign to each particle
- But, user must have a good understanding of the physics required
 - omission of particles or physics could cause errors or poor simulation
Why Do We Need a Physics List?

- Physics is physics – shouldn't Geant4 provide, as a default, a complete set of physics that everyone can use?
- No:
 - there are many different physics models and approximations
 - very much the case for hadronic physics
 - but also the case for electromagnetic physics
 - computation speed is an issue
 - a user may want a less-detailed, but faster approximation
 - no application requires all the physics and particles Geant4 has to offer
 - e.g., most medical applications do not want multi-GeV physics
Why Do We Need a Physics List?

• For this reason Geant4 takes an atomistic, rather than an integral approach to physics
 ▪ provide many physics components (processes) which are decoupled from one another
 ▪ user selects these components in custom-designed physics lists in much the same way as a detector geometry is built

• Exceptions:
 ▪ a few electromagnetic processes must be used together
 ▪ future processes involving interference of electromagnetic and strong interactions may require coupling as well
Physics Processes Provided by Geant4

- **EM physics**
 - “standard” processes valid from ~ 1 keV to ~ PeV
 - “low-energy” valid from 250 eV to ~ PeV
 - optical photons

- **Weak physics**
 - decay of subatomic particles
 - radioactive decay of nuclei

- **Hadronic physics**
 - pure hadronic processes valid from 0 to ~ TeV
 - electro- and gamma-nuclear valid from 10 MeV to ~ TeV

- Parameterized or “fast simulation” physics
G4VUserPhysicsList

• All physics lists must derive from this class
 ▪ and then be registered with the run manager
• In our example:

  ```
  class BeamTestPhysicsList: public G4VUserPhysicsList {
    public:
      BeamTestPhysicsList();
      ~BeamTestPhysicsList();

      void ConstructParticle();
      void ConstructProcess();
      void SetCuts();
  }
  ```

• User must implement the methods ConstructParticle, ConstructProcess and SetCuts
G4VUserPhysicsList: Required Methods

- **ConstructParticle()** - choose the particles you need in your simulation and define all of them here.

- **ConstructProcess()** - for each particle, assign all the physics processes important in your simulation.
 - What's a process?
 - => a class that defines how a particle should interact with matter (it's where the physics is!)
 - more on this later

- **SetCuts()** - set the range cuts for secondary production.
 - What's a range cut?
 - => essentially a low energy limit on particle production
 - more on this later
```cpp
void BeamTestPhysicsList::ConstructParticle()
{
    G4BaryonConstructor* baryonConstructor = new G4BaryonConstructor();
    baryonConstructor->ConstructParticle();
    delete baryonConstructor;

    G4BosonConstructor* bosonConstructor = new G4BosonConstructor();
    bosonConstructor->ConstructParticle();
    delete bosonConstructor;

    ....
    ....
}
```
ConstructParticle() (alternate)

```cpp
void BeamTestPhysicsList::ConstructParticle()
{
    G4Electron::ElectronDefinition();
    G4Proton::ProtonDefinition();
    G4Neutron::NeutronDefinition();
    G4Gamma::GammaDefinition();
    ....
    ....
}
```
void BeamTestPhysicsList::ConstructProcess()
{
 AddTransportation();
 // method provided by G4VUserPhysicsList
 // assigned transportation process to all particles
 // defined in ConstructParticle()

 ConstructEM();
 // method may be defined by user (for convenience)
 // put electromagnetic physics here

 ConstructGeneral();
 // method may be defined by user (for convenience)
}
void BeamTestPhysicsList::ConstructEM()
{
 theParticleIterator->reset();
 while((*theParticleIterator)()) {
 G4ParticleDefinition* particle =
 theParticleIterator->value();
 G4ProcessManager* pmanager =
 particle->GetProcessManager();
 G4String particleName =
 particle->GetParticleName();

 if (particleName == "gamma") {
 pmanager->AddDiscreteProcess(new
 G4GammaConversion());

 ...
 }
 }
}
ConstructGeneral()

void BeamTestPhysicsList::ConstructGeneral()
{
 // Add decay process
 G4Decay* theDecayProcess = new G4Decay();
 theParticleIterator->reset();
 while((*theParticleIterator)()) {
 G4ParticleDefinition* particle =
 theParticleIterator->value();
 G4ProcessManager* pmanager =
 particle->GetProcessManager();
 if (theDecayProcess->IsApplicable(*particle)) {
 pmanager->AddProcess(theDecayProcess);
 pmanager->SetProcessOrdering(theDecayProcess,
 idxPostStep);
 pmanager->SetProcessOrdering(theDecayProcess,
 idxAtRest); } } }
void BeamTestPhysicsList::SetCuts()
{
 defaultCutValue = 1.0*mm;
 SetCutValue(defaultCutValue, "gamma");
 SetCutValue(defaultCutValue, "e-");
 SetCutValue(defaultCutValue, "e+");

 //
 // These are all the production cut values you need to set
 // - not required for any other particle
}
G4VModularPhysicsList

- The physics list in our example is relatively simple

- A realistic physics list is likely to have many more physics processes
 - such a list can become quite long, complicated and hard to maintain
 - try a modular physics list instead

- Features of G4VModularPhysicsList
 - derived from G4VUserPhysicsList
 - AddTransportation() automatically called for all registered particles
 - Allows you to define “physics modules”: EM physics, hadronic physics, optical physics, etc.
A Simple G4VModularPhysicsList

• Constructor:
 MyModPhysList::MyModPhysList(): G4VModularPhysicsList()
 {
 defaultCutValue = 1.0*mm;
 RegisterPhysics(new ProtonPhysics());
 // all physics processes having to do with protons

 RegisterPhysics(new ElectronPhysics());
 // all physics processes having to do with electrons

 RegisterPhysics(new DecayPhysics());
 // physics of unstable particles
 }

• Set Cuts:
 void MyModPhysList::SetCuts()
 {
 SetCutsWithDefault();
 }
Physics Constructors

- Allows you to group particle and process construction according to physics domains

- class ProtonPhysics : public G4VPhysicsConstructor

 public:
 ProtonPhysics(const G4String& name = “proton”);
 virtual ~ProtonPhysics();

 virtual void ConstructParticle();
 // easy – only one particle to build in this case

 virtual void ConstructProcess();
 // put here all the processes a proton can have
Pre-packaged Physics Lists (1)

• Our example deals mainly with electromagnetic physics.

• A complete and realistic EM physics list can be found in novice example N03:
 ▪ good starting point
 ▪ add to it according to your needs

• Adding hadronic physics is more involved:
 ▪ for any one hadronic process, user may choose from several hadronic models
 ▪ choosing the right models for your application requires care
 ▪ to make things easier, pre-packaged physics lists are now provided according to some reference use cases
Pre-packaged Physics Lists (2)

- Each pre-packaged (or reference) physics list includes different choices of EM and hadronic physics, but the EM part derives mainly from the electromagnetic physics of example N03.
- These can be found on the Geant4 web page at

- Caveats:
 - these lists are provided as a “best guess” of the physics needed in a given case
 - the user is responsible for validating the physics for his own application and adding (or subtracting) the appropriate physics
 - they are intended as starting points or templates
Summary

- All the particles, physics processes, and production cuts needed for an application must go into a physics list.

- Two kinds of physics list classes are available for users to derive from:
 - G4VUserPhysicsList – for relatively simple physics lists
 - G4VModularPhysicsList – for detailed physics lists

- Some pre-packaged physics lists are provided by Geant4 as starting points for users:
 - electromagnetic physics lists
 - electromagnetic + hadronic physics lists

- Care is required by user in choosing the right physics to use.