Geometry III: GDML and CAD

Joseph Perl

Geant4 Tutorial
Jefferson Lab
11 July 2012
Overview

• Up to now, the course has shown how to define materials and volumes from C++.
 - and messenger classes can allow some control over geometry from the Geant4 command line (e.g. example A01)

• This talk shows some alternate ways to define geometry at runtime by providing a file-based detector description
Defining Geometry in GDML

Silicon Pixel & Microstrip Tracker for Collider Detector
Norman Graf, LCDD Collaboration, SLAC

Joseph Perl

Geant4 Tutorial Course - Geometry 3
GDML: Geometry

- An XML-based language designed as an application-independent persistent format for describing the geometries of detectors.
 - Implements “geometry trees” which correspond to the hierarchy of volumes a detector geometry can be composed of
 - Allows materials to be defined and solids to be positioned
- Because it is pure XML, GDML can be used universally
 - Not just for Geant4
 - Can be format for interchanging geometries among different applications.
 - Can be used to translate CAD geometries to Geant4
Why XML?

- Simplicity
 - Rigid set of rules
 - Self-describing data validated against schema
- Extensibility
 - Easy to add custom features, data types
- Interoperability
 - OS, languages, applications
- Hierarchical structure
 - Appropriate for Object-Oriented programming
 - Detector/subdetector relationships
- Open W3 standard
- Many tools for validating, parsing, translating
- Automatic code-generation for data-binding
GDML Overview

- Definitions
- Materials
- Solids
- Structures
- Setup
GDML Definitions

- Contains numerical values of constants, positions, rotations and scales that will be used later on in the geometry construction.
 - Uses CLHEP expressions
- Constants
 - `<constant name="length" value="6.25"/>
- Variables
 - `<variable name="x" value="6"/>
 - `<variable name="y" value="x/2"/>
- Once defined, can be used anywhere later, e.g.
 - `<box name="my_box" x="x" y="y" z="x+y"/>
GDML Definitions II

- Positions
 - `<position name="P1" x="25.0" y="50.0" z="75.0" unit="cm"/>

- Rotations
 - `<rotation name="RotateZ" z="30" unit="deg"/>

- Scales
 - `<scale name="my_reflection" x="-1" y="-1" z="1"/>

- Matrices
 - `<matrix name="m" coldim="3" values="0.4 9 126
 8.5 7 21
 34.6 7 9"/>

• Isotopes
 - `<isotope name="U235" Z="92" N="235">`
 - `<atom type="A" value="235.04">`
 - `</isotope>`
• Compare to:
 - `G4Isotope* U235 =`
 - `new G4Isotope("U235",92,235,235.04);`
GDML Materials II

- **Simple Elements**
 - `<element Z="8" formula="O" name="Oxygen" >
 - <atom value="16" />
 - </element>`

- **User-defined isotopic abundances**
 - `<element name="enriched_uranium" >
 - <fraction ref="U235" n="0.9" />
 - <fraction ref="U238" n="0.1" />
 - </element>`

- **Compare to:**
 - `G4Element* enU = new G4Element("eU","U",2);
 enU->AddIsotope(isoU235,90.*perCent);
 enU->AddIsotope(isoU238,10.*perCent);`
GDML Materials III

- Materials can be defined in three ways:

 - Created directly from an element:

    ```
    <material name="Al" Z="13.0">
      <D value="2.70" />
      <atom value="26.98" />
    </material>
    ```

 - Created from previously defined elements or materials by number of atoms (“molecule”):

    ```
    <material name="Water" formula="H2O">
      <D value="1.0" />
      <composite n="2" ref="Hydrogen" />
      <composite n="1" ref="Oxygen" />
    </material>
    ```
• Created as a fractional mixture of previously defined elements or materials, ("compound"):
 - `<material formula="air" name="Air"/>
 - `<D value="0.00129"/>
 - `<fraction n="0.7" ref="Nitrogen"/>
 - `<fraction n="0.3" ref="Oxygen"/>
 - `</material>`
GDML Solids

- Collection of all solid definitions which are used in the geometry description:
 - Box
 - Cone Segment
 - Ellipsoid
 - Elliptical Tube
 - Elliptical Cone
 - Orb
 - Paraboloid
 - Parallelepiped
 - Polycone
 - Polyhedron
 - Sphere
 - Torus Segment
 - Trapezoid (x&y vary along z)
 - General Trapezoid
 - Tube with Hyperbolic Profile
 - Cut Tube
 - Tube Segment
 - Twisted Box
 - Twisted Trapezoid
 - Twisted General Trapezoid
 - Twisted Tube Segment
 - Extruded Solid
 - Tessellated Solid
 - Tetrahedron
GDML Boolean Solids

- The boolean operations union, subtraction and intersection are also supported, e.g.
 - `<box name="box_1" x="1" y="5" z="20" />
 - `<box name="box_2" x="4" y="4.5" z="18" />

- `<union name="union">
 - `<first ref="box_1" />
 - `<second ref="box_2" />
 - `<positionref ref="union_position" />
 - `<rotationref ref="union_rotation" />
 - `</union>`
GDML Structure

- Volumes are created from solids and materials that were previously defined in this or a linked GDML file
- Both logical and physical volumes are defined in one structure:
 - `<volume name="World">
 - <materialref ref="Air"/>
 - <solidref ref="WorldBox"/>
 - <physvol>
 - <volumeref ref="vol0"/>
 - <positionref ref="center"/>
 - <rotationref ref="identity"/>
 - </physvol>
 - </volume>`
• Replicated and Parameterized volumes are also supported.
 - See the documentation for examples.
• The top volume is defined here.
 - <setup name="Test1" version="1.0">
 - <world ref="World"/>
 - </setup>

• It is possible define multiple geometry setups choosing different volumes as world volumes

• Geometry description can be split over multiple files, allowing more granular and/or distributed development
Importing into Geant4

- GDML files can be directly imported into Geant4 geometry, using the GDML plug-in facility:
 - `#include "G4GDMLParser.hh"
- Generally you will want to put the following lines into your DetectorConstruction class:
 - In the Class Constructor:
 - `G4GDMLParser parser;`
 - In the Construct method:
 - `parser.Read("geometryFile.gdml");`
 - To access the World volume:
 - `G4VphysicalVolume* W = parser.GetWorldVolume();`
Getting Started

- To include the Geant4 module for GDML:
 - Install the XercesC parser (version 2.8.0 or 3.0.0)
 - http://xerces.apache.org/xerces-c/download.cgi
 - Set appropriate environment variables set when G4 libraries are built:
 - Answer yes to relevant questions in ./Configure -build
 - Or if you don’t use ./Configure -build:
 - set XERCESROOT to path to where the XercesC parser library and headers are installed
 - set G4LIB_BUILD_GDML to "1"
- Examples available in:
 - $G4INSTALL/examples/extended/persistency/gdml
Importing Geometry from CAD

Varian TrueBeam Linac, M. Constantin et. al, Stanford University

Joseph Perl

Geant4 Tutorial Course - Geometry 3
Importing CAD Geometries

- Users with 3D engineering drawings may want to incorporate these into their Geant4 simulation as directly as possible
- Difficulties include:
 - Proprietary, undocumented or changing CAD formats
 - Usually no connection between geometry and materials
 - Mismatch in level of detail required to machine a part and that required to transport particles in that part
 - CAD is never as easy as you might think (if the geometry is complex enough to require CAD in the first place)
- One output format most CAD programs do support is STEP
 - Not a complete solution, in particular does not contain material information
 - There are movements under way to get new formats that contain additional information, but none yet widely adopted
Converting STEP to GDML

• Imperfect, but still helpful solutions are tools to convert STEP to GDML and provide the user a way to add materials information
• There are two cases where existing CAD programs have added GDML export features
 - Since these CAD programs can also read in STEP, they can be used as STEP to GDML converters
 - Neither option is free
 - Neither option works perfectly
• Discussion of these solutions takes place in the Geant4 Persistency forum:
• Useful technical note:
Current Solutions STEP to GDML

- **ST-Viewer**
 - A similar solution that was, until recently, free
 - No longer free, now part of ST Developer
 - http://www.steptools.com

- **FastRad**
 - GDML export extension was funded by European Space Agency Geant4 team
 - Not free (except for limited, trial mode that can handle only a small number of volumes)
 - Not perfect (we have seen rare but significant errors in conversion of some solids)
 - Still has produced some very cool results
 - http://www.fastrad.net/

- There is an effort under way to raise funding to pay to get this job done right: a more accurate tool, easier to use, with a free license
 - Just at the fundraising point right now
A recent alternative solution to go from CAD to Geant4 is provided by the cadmesh project by Christopher Poole and colleagues at Queensland University of Technology, Brisbane, Australia.

- cadmesh does not take the CAD to STEP to GDML to Geant4 route that was shown in previous solutions.
- Instead, cadmesh goes CAD to STL or PLY to G4TessellatedSolid
 - Have your CAD program output STL or PLY files
 - Include the cadmesh classes in your Geant4 detector construction
 - At Geant4 execution time, these classes read the STL or PLY files to produce a G4TessellatedSolid
- Freely available from: http://code.google.com/p/cadmesh/
- cadmesh has not been tested by any of us in the SLAC group
- For some geometries, GDML approaches may be more efficient. For example, a simple cylinder is move efficiently by a G4Tubs than by a G4Tessellated solid
Summary

• Geometry definition using text files:
 - opens up the user-base to non-C++ coders
 - allows geometry setup to happen at run time rather than compile time
 - provides an way to take geometry data from CAD or to other databases (construction, survey,...)
 - but the path from CAD to GDML is not completely automatic
 - third party tools are required (free only for trivial use)
 - user must input materials information by hand
• GDML plugin fully supports the whole set of G4 solids, including boolean solids, parameterizations, and replications.
• GDML also allows a way to export Geant4-based geometry for downstream clients (e.g. event reconstruction, display)
• cadmesh provides another useful alternative for CAD to Geant4